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In liquids, phonons have a very short lifetime and the total potential energy does not depend linearly on
temperature. Thus it may appear that atomic vibrations in liquids cannot be described by the harmonic-
oscillator model and that the equipartition theorem for the potential energy is not upheld. In this paper we show
that the description of the local atomic dynamics in terms of the atomic-level stresses provides such a descrip-
tion, satisfying the equipartition theorem. To prove this point we carried out molecular-dynamics simulations
with several pairwise potentials, including the Lennard-Jones potential, the modified Johnson potential, and the
repulsive part of the Johnson potential, at various particle number densities. In all cases studied the total
self-energy of the atomic-level stresses followed the �3 /2�kBT law. From these results we suggest that the
concept of local atomic stresses can provide description of thermodynamic properties of glasses and liquids on
the basis of harmonic atomistic excitations. An example of application of this approach to the description of the
glass transition temperature in metallic glasses is discussed.
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I. INTRODUCTION

The lattice dynamics of crystals can be described well in
terms of phonons because of the periodicity of the lattice. In
liquids and glasses, however, in the absence of the lattice
periodicity, phonons are scattered strongly except for very
long wavelengths. Furthermore, the potential energy of liq-
uids generally does not depend linearly on temperature.
Instead it could be often fitted with the Rosenfeld-Tarazona
�−Uo+aT3/5� formula1,2 that was justified with the use of the
density-functional theory.1 Thus it may appear that it is im-
possible to introduce the description of the dynamics of liq-
uids and glasses in terms of the harmonic-oscillator model.

A major reason for this difficulty is that the structure of a
liquid is temperature dependent and a part of the temperature
dependence of the total potential energy originates from the
temperature-dependent configurational energy. Then it may
be possible that the vibrational part of the energy can be
described in terms of the harmonic excitation models while
the temperature dependence of the configurational energy
could be expressed separately, for instance, in terms of the
energy of the inherent structure of the potential-energy land-
scape �PEL� theory.3–5 However, vibrational modes in the
liquid have a very short lifetime, i.e., of the order of 10−13 s,
with many of them having imaginary frequencies, making
the analysis of atomic dynamics difficult.6,7

Earlier we made an attempt to describe the liquid struc-
ture, energetics, and dynamics with a rather different ap-
proach. The concept of atomic-level stresses was introduced
to characterize the distortions of the local atomic environ-
ment from an ideal state.8–13 It was then demonstrated that
the total self-energy of the atomic-level stresses follows
the simple equipartition �3 /2�kBT law at temperatures well
above the glass transition temperature. Moreover, this total
self-energy is equipartitioned among the six stress compo-
nents, i.e., one compression/dilation component and five
shear components.13 This means that the dynamics of the
atomic-level stresses may approximately describe the atomic
dynamics in the system and could be used as the basis for the
statistical mechanics of liquids.

The earlier demonstration, however, was made only for
the short-range modified Johnson pair potential �mJp� devel-
oped for iron. In this paper we show that the equipartition
theorem is more generally applicable by testing it for several
different pair potentials. The potentials we have chosen are
the Lennard-Jones potential, the modified Johnson potential,
and finally, motivated by the idea that, to a large extent,
liquid structures are determined by the repulsive part of
the potential,14 we also made simulations retaining only
the repulsive part of the modified Johnson pair potential.
The calculations were performed at various number densi-
ties. We found that in all cases stress self-energies follow the
�3 /2�kBT law extremely well.
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II. ATOMIC LEVEL STRESSES

The concept of atomic-level stresses was introduced ear-
lier to describe the local structure of metallic glasses.8–13 In
order to gain intuitive understanding of the atomic-level
stresses, it is useful to consider packing of soft spheres.
Imagine that a soft sphere is confined in the cage formed by
its nearest neighbors �see Fig. 1�. If this cage is smaller than
the size of the central sphere itself, then the sphere at the
center of the cage is under compression. On the other hand if
the cage is larger, the central sphere is under dilation. Fur-
thermore the cage may not be spherical in shape. In this case
the central sphere experiences shear stresses. Thus, the
atomic-level stresses describe the topology and geometry of
the nearest neighbors.

Let us suppose that we consider an assembly of atoms
interacting via a pairwise potential, ��r�. If this system is
distorted by an infinitesimal homogeneous strain tensor �ab,
the change in its potential energy could be written as12

�E =
1

2�
ij

�Eij = �
i

�E1�i� + �
i

�E2�i� . . . , �1�

where
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Vi, �i
ab, and Ci

abcd are the atomic volume, the atomic-level
stress, and the atomic-level elastic modulus of the atom i.
The summations over i and j are over all atoms in the sys-
tem, and the summations over a, b, c, and d are over Carte-
sian components. The expression for local atomic-level
stresses �i

ab from potential-energy expansion is the following
�neglecting the kinetic-energy contribution, which is trivial
and separable for classical systems�:
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where rij is the distance between atoms i and j, rij = �r� j −r�i�.
The expressions for the local atomic elastic constants could
be found in Ref. 12. A sensible way to define local atomic

volume Vi in Eqs. �2�–�4� is to use Voronoi polyhedra. How-
ever, for the sake of simplicity, we used an essentially
equivalent but simpler approach, calculating Vi using a
weighted average near-neighbor distance for atom i, adopted
earlier9 �see also Appendix B�.

Since liquids and glasses are macroscopically isotropic, it
is natural to use the spherical representation of the stresses or
equivalently the cubic representation.12 The stress compo-
nents in the cubic representation are:
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Here �� corresponds to the atomic-level pressure,

Pi = � 1
	3

��i
�, �9�

while the other five atomic-level stresses represent shear
stresses that are macroscopically equivalent to each other and
describe the shear deformation of local atomic environment.

Equations �2� and �3� could also be expressed in the cubic
representation:

�E1�i� = Vi�
�

�i
���, �10�

and

�E2�i� =
1

2
Vi�

�

Ci
�����2+ . . . , �11�

where the superscript � marks the components of the
stresses, strains, and elastic constants in the cubic represen-
tation. The off-diagonal terms in Eq. �11� vanish for a per-
fectly isotropic system.

III. SELF-ENERGY OF ATOMIC LEVEL STRESSES

We now calculate the local elastic energy associated with
the atomic-level stresses. For this purpose we consider an
idealized amorphous state. We assume that in such a state all
the nearest-neighbor atoms are at the ideal distance from
each other, corresponding to the minimum in the interatomic
potential. Thus all the atomic-level stresses are zero in a
nearest-neighbor approximation. In this state the first term in
Eq. �1� is zero. Furthermore we assume that the local elastic
constants are spatially uniform in the mean-field approxima-
tion and use the spatial averages of the model that depend on
temperature. Thus Eq. �11� is now
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FIG. 1. Schematic of the nearest-neighbor shells.
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�E2�i� =
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We then recover the original glass structure by locally de-
forming the ideal structure. We assume that the local strain
necessary to do this is given by

�i
� �

�i
�

�Ci
�

. �13�

Equation �12� is now

�E2�i� = �Vi�
�

�Ci
�

2
� �i

�

�Ci
�
�2

. �14�

The averaging of Eq. �14� over all sites �or over time for a
single site� leads to the expression for the self-energy of the
atomic-level stresses,

��E = �
�

�Vi���i
��2

2�Ci
�

. �15�

When the average stress, which is equal to the external
stress, is not zero, as is in some cases described below, the
ideal state should be defined as the state that has the atomic-
level stress equal to the average everywhere. Thus the self-
energy of the � component of the stresses is

��E� =
�Vi���i

� − ��i
��2

2�Ci
�

. �16�

The assumption of independent oscillators leads to the
standard result for harmonic system, i.e., the average ener-
gies of the different stress components should be equal to
each other. Since the total potential energy of �3 /2�kBT is
equally divided among the six components, it is natural to
expect that the ensemble average of the energy for every
stress component will lead to

��E��i� = �1

6
��3

2
�kBT =

1

4
kBT , �17�

for all stress components. This result was indeed confirmed
by Chen et al. in Ref. 13 and it is reproduced below.

Equipartition of the potential energy among different
shear components is expected since they are macroscopically
equivalent to each other. However the fact that the pressure
component of the self-energy is equal to the self-energy of
the shear stresses is, from our point of view, quite nontrivial.
Since the atomic-level stresses primarily depend on the rela-
tive position of the nearest neighbors, Eq. �17� means that
the dynamics of the nearest-neighbor shell fluctuations �Fig.
1� is approximately harmonic and independent from each
other at high temperatures.

In deriving Eq. �16�, we assumed that all stress compo-
nents on all sites �and on the same site� are totally indepen-
dent from each other. Thus the local strains do not satisfy the
static compatibility condition. This should apply only at tem-
peratures high enough not to have atomic correlations.

The average values of the elastic constant are related to
the instantaneous, or high frequency, bulk B and shear G
moduli of the material via

B =
1

3
�Ci

�, G =
1

2
�Ci

�1 . �18�

The distributions of the atomic-level elastic constants for the
Lennard-Jones potential are shown in Appendix B.

IV. DETAILS OF MOLECULAR-DYNAMICS
SIMULATIONS

In our molecular-dynamics �MD� simulations, we studied
single-component systems of particles interacting through
the three different pairwise potentials shown in Fig. 2. The
simulations were performed on the systems consisting of
5488 particles with the mass of iron. The time step was cho-
sen to be 10−15 s. In each case the total volume was kept
constant. The periodic boundary conditions were applied. A
fifth-order Gear algorithm was used to integrate equations of
motion.15

We started with the mJp described in Appendix A.16,17 We
also considered the repulsive part of the modified Johnson
pair potential �RmJ� that was obtained by using a cutoff at
the minimum of the mJp and by shifting the repulsive part to
zero at the cutoff distances. Lastly we used the Lennard-
Jones �LJ� potential that was cut and shifted at 2.5�. We
choose the parameters of the LJ potential in such a way that
the minimum of the cut and shifted potential matches the
position and depth of the mJp, as described in Appendix A.

Simulations with the RmJ were done for seven different
fixed densities. The distances between the nearest neighbors
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FIG. 2. Pair potentials used in MD simulations. For the repul-
sive part of the modified Johnson potential, simulations were per-
formed at seven different number densities. If the system at these
densities would form fcc lattice then the distances between the near-
est neighbors would correspond to the positions of the seven top
bars in the main plot. For the Lennard-Jones potential, simulations
were performed at three different densities that correspond to the
three middle bars. For the full modified Johnson potential, simula-
tions were performed at a density that corresponds to the minimum
of the potential.
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in the fcc lattice at these densities, ��=	2 /rnn
3 �, are shown as

vertical bars �top seven bars� in Fig. 2 �see also Table I�.
Simulations on the LJ potential were done for three different
densities that are also shown as vertical bars �three middle
bars� in Fig. 2. Simulations on the full mJp were done only
for one density �o=0.07843 Å−3 in order to verify the pre-
vious results.13

Temperature was introduced using simple temperature
rescaling algorithm.18,19 Thus we averaged the kinetic energy
of the particles over the ensemble and over some time win-
dow �105 MD steps�. The average value of the kinetic energy
over the time window, in general, deviates from the target
value of the average kinetic energy that corresponds to the
target temperature. Thus at the end of the time window,
we rescaled the velocity of particles according to v� i�
=v� i

	Ktar /Kave, where Ktar= �3 /2�kBT is the target value of
average kinetic energy and Kave is the average value of the
kinetic energy over the time window.

In order to obtain a liquid state, we started simulations on
the bcc lattice at low densities �rnn=3.54 Å� and at high
temperatures �10 000 K�. After some time �105 MD steps�,
the system melted and equilibrated. Then we rescaled the
coordinates of particles to the required density and instanta-
neously �quench� reduced the temperature using velocity res-
caling. The relaxation of the system was controlled using the
time dependence of potential energy per particle and the pair-
density function �PDF�.

Since we studied single-component systems, our liquids
tended to crystallize at temperatures near the glass transition
temperature. However, in this work we are interested in test-
ing the equipartition theorem for stable liquids at higher tem-
peratures. Thus we were not concerned with the behavior of
the system near the glass transition. The lowest studied tem-
peratures for which crystallization does not occur for a time
sufficient to collect statistics �106 MD steps� for every poten-
tial and density studied are presented in Table I. The highest
studied temperature was chosen to be 5000 K for all poten-
tials and densities. For each temperature studied, we selected
100 structures with 10 000 MD steps between the consequent
structures for the data analysis.

V. RESULTS

Figure 3 shows the PDF for some of the studied potentials
and densities at temperatures just above the crystallization

temperature. It is interesting to note that the results from the
RmJ and those from the LJ potentials essentially coincide
beyond the first peak. This is probably because the LJ poten-
tial is strongly anharmonic and is dominated by the repulsive
core of the potential. The result from the full mJp is some-
what different. In particular the minimum in the PDF beyond
the first peak is better defined. The mJp has a region with a
strongly negative curvature in the vicinity of the minimum in
the PDF. This promotes clearer bifurcation of the nearest and
second-nearest neighbors, resulting in the deeper minimum
in the PDF. In all cases the first minimum of the pair-density
function is relatively well defined. This allows us to define
the nearest neighbors and the first coordination shell—the
concepts that are essential for the derivation of formulas in
Secs. II and III.

The local atomic volume, local atomic-level stresses, and
local atomic elastic constants were calculated from particle
coordinates. The distributions for some of these parameters
are shown in Appendix B. Thus we calculate the average
values of all parameters and the mean-square deviations of
local atomic stresses, and obtain the stress self-energies.

Figure 4 shows the temperature dependence of the stress
self-energies 
Eq. �16�� from the simulations using the LJ
potential for three different densities. In calculating the local
atomic stresses 
Eq. �4��, we used two different cutoffs. In
one case we used the first minimum of the PDF cutoff. In the
other case we took into account all atoms within the interac-
tion range. As it could be seen from the figure, there are no
significant differences between the self-energies of the pres-
sure component for both of these approaches. The results for
shear-stress-energy components are slightly different. The re-
sults with the first coordination shell cutoff lie almost exactly
on top of the equipartition line. The results with the potential
range cutoff lie slightly above the equipartition line. The dif-
ference, however, is not significant. It is clear that shear-
stress energies also approximately follow the expected equi-
partition law.

The results for mJp, shown in Fig. 5, are similar to those
for the LJ system shown in Fig. 4. We see that the results in
a liquid state above �1500 K again follow the equipartition
theorem, as shown earlier.13 This figure also shows the re-
sults from the glassy state at temperatures below 1000 K.

TABLE I. Densities and crystallization temperatures.

rnn�fcc�
�Å�

�
10−2 �Å−3�

Tmin�LJ�
�K�

Tmin�mJp�
�K�

Tmin�RmJ�
�K�

2.6223 7.843 2200 1300 650

2.5391 8.640 3700 1100

2.4945 9.111 4800 1600

2.4400 9.735 2100

2.4000 10.230 2500

2.3500 10.897 3200

2.3000 11.623 3800 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Scaled Distance (r/r

nn
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FIG. 3. Scaled radial pair-density functions for some of the stud-
ied systems. All the curves shown are for temperatures just above
the crystallization temperature.
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The glassy state was obtained by instant temperature drop
from the liquid state at 1400 to 800 K, followed by relax-
ation, and further temperature drops from 800 K to the final
temperatures with consequent relaxation. The equipartition
rule is obviously violated in the glassy state.12,13

Finally the results obtained with the repulsive part of the
mJp are presented in Fig. 6. The case of repulsive potential is
different from the two previous cases because the range of
the potential is short and the system is kept together by the
external pressure. Thus the potential is highly asymmetric.
Also the cutoff distance is not an issue here �the potential
essentially ends at the first maximum of the PDF—not the
minimum�. In that sense the repulsive potential represents a
much more serious challenge to the theory. Nevertheless we
see a perfect agreement between the equipartition line and
the self-energy of the atomic-level stresses.

VI. DISCUSSION

The results demonstrate that each component of the self-
energy of the atomic-level stresses is not only proportional to
temperature but is approximately equal to �1 /4�kBT for vari-
ous pairwise potentials at various densities. This suggests
that the equipartition rule for the stress self-energy is a gen-
eral feature of the high-temperature liquid. Thus the dynam-
ics of the atomic-level stresses appears to represent the qua-
sinormal modes of the system.

We know that phonons with wavelength much longer than
interatomic spacings propagate even in the liquid, and that
they are the normal modes of the system at low frequencies.
However, the weight of these modes is very small compared
to the total density of phonons. In addition, it is shown in
Appendix B �in Fig. 9� that some atomic sites have zero or
negative values of local shear elastic constants. This implies
local softness and instability of atomic position. Strong
damping and scattering of phonons by these sites would lead
to localization of modes. The localized normal modes can be
similar to the “rattlers” mentioned, for example, in Ref. 23.
This localization of atomic dynamics must be the reason why
the use of the atomic-level stresses as the effective normal
modes is justified. At high enough temperatures, the collec-
tive dynamics of atoms is sufficiently localized to the
nearest-neighbor shell of an atom so that the dynamics of the
atomic-level strain becomes the effective normal mode.

Our results have shown that each component of the self-
energy of the atomic-level stresses is equal to �1 /4�kBT at
high temperatures. However, as shown in Fig. 5, the data
deviates from the equipartition line at low temperatures. This
is expected since the equipartition line extrapolates to zero at
T=0, meaning that the stresses have to be zero everywhere at
T=0. In terms of the atomic-level pressure, for instance, this
means that every interatomic distance is equal to the value at
the minimum of the pairwise potential, as in the ideal glass
structure discussed in deriving Eq. �12�. Of course such an
ideal structure cannot be reached. Thus, as temperature is
lowered, the system would become nonergodic and the self-
energy of the stresses would freeze into a nonzero value at a
certain temperature.
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ing through shifted Lennard-Jones potential. The figure shows re-
sults for all three densities studied. The open squares show energies
of all shear components of stress energy calculated using potential
range cutoff in Eq. �4�. The filled squares show energies of the shear
components of the stresses but with a cutoff that corresponds to the
first minimum in the pair-density function. The open and filled
circles show energies of the pressure component for all densities
and two cutoffs �all data are on top of the equipartition line�.

0 1000 2000 3000 4000 5000
Temperature T (K)

0

0.02

0.04

0.06

0.08

0.1

0.12

E
ne

rg
y

of
St

re
ss

C
om

po
ne

nt
s

(e
V

) (1/4) k
b
T

Pressure, potential range cut-off
Shear, potential range cut-off
Pressure, first shell cut-off
Shear, first shell cut-off

modified Johnson (mJp)

r
nn

= 2.622 (Å)

3.44 (Å) vs. 3.30 (Å)

FIG. 5. Similar to Fig. 4 but for the modified Johnson pair
potential.

0 1000 2000 3000 4000 5000
Temperature T (K)

0

0.02

0.04

0.06

0.08

0.1

0.12

En
er
gy
of
St
re
ss
C
om
po
ne
nt
s(
eV
) (1/4)kbT

E
α
E
γ1

E
γ2

E
ε1
E
ε2
E
ε3

Repulsive modified Johnson (RmJ)
All Densities

rnn = 2.622 (Å) , Unn(fcc) = 0 (K)

rnn = 2.300 (Å) , Unn(fcc) = 1500 (K)

FIG. 6. Similar to Figs. 4 and 5 but for the repulsive part of the
modified Johnson potential �results for all seven densities studied
are in the figure�.

EQUIPARTITION THEOREM AND THE DYNAMICS OF LIQUIDS PHYSICAL REVIEW B 78, 064205 �2008�

064205-5



This logic was used as the basis for the recent theory of
glass transition.20 In this case it was further assumed that
the atomic-level stresses are dressed by the long-range stress
field,12 approximately described by the continuum theory of
Eshelby.21 Thus below a certain temperature, above the glass
transition temperature,13 the atomic-level stresses are no
longer independent but interact through the long-range stress
field. However when the self-energy of the stresses is renor-
malized with the dressing by the long-range stress field, the
equipartition theorem should be recovered.12 The success of
the theory of the glass transition20 implies that the equiparti-
tion law must be valid not only at high temperatures, as
demonstrated here, but at all temperatures down to just
above the glass transition temperature if the atomic-level
stresses are properly renormalized.

VII. CONCLUSION

In this paper we examined the possibility of describing
the dynamics of liquids at the atomic level in terms of the
quasiharmonic vibrations of the nearest-neighbor shells, rep-
resented by the atomic-level stresses. Often the dynamics of
liquids is discussed in terms of local-density fluctuations.
The atomic-level stress tensor includes the density �pressure�
as the trace of the tensor. However, besides the pressure,
there are five shear components. Thus the description by the
atomic-level stress tensor is more extensive than the descrip-
tion by the fluctuations in the density, a scalar.

One of the main predictions of the mean-field atomic-
level stress fluctuation theory is the equipartition of stress
self-energies among six different stress components as in Eq.
�17�. We have carried out the MD simulations to test this
equipartition theorem on three distinct pairwise potentials at
different densities. We indeed found that the equipartition
rule holds with excellent precision in all cases studied. Thus
our results show that the equipartition of self-energy of
atomic-level stresses between components is a rather general
property, i.e., valid for different potentials and densities. The
results imply that the quasiharmonic vibrations of the
nearest-neighbor shells, represented by the atomic-level
stresses, provide a good basis for describing the structure and
properties of liquids and glasses.

At present our analysis has been limited to the single-
component systems. Since real glasses are usually multicom-
ponent systems, we plan to perform multicomponent simula-
tions in the near future. We also plan to test this approach
with an embedded atom many-body potential.22
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APPENDIX A: DETAILS OF THE PAIR POTENTIALS

The form of the modified Johnson pair potential used in
this study is slightly different from the one that was used
previously.17 The minimum allowed distance used in the pre-

vious form was 1.9 Å while we found that at temperatures
above 3000 K atoms can come closer than 1.9 Å. Thus we
had to modify potential at small distances. In our present
work, we used the potential that coincides with the form
described previously17 at distances larger than 2.4 Å. For the
distances smaller than 2.4 Å, the form of the potential was
slightly modified. The full form of the potential is given
below �the intervals of distance r are in Å and energy ��r� is
in eV�.

For 
0	r
2.246948�, the potential has the form

��r� = + 2.463595�r − 2.977441�4

− 1.396616�r − 2.977441�2.

For 
2.246948	r
2.4�, the potential has the form

��r� = − 12.900210�r − 2.4�4 − 15.096180�r − 2.4�3

+ 1.372738�r − 2.4�2 − 0.504775�r − 2.4� − 0.200211.

For 
2.4	r
3.0�, the potential has the form

��r� = − 0.639230�r − 3.115829�3 + 0.477871�r − 3.115829�

− 0.092606.

For 
3.0	r
3.44�, the potential has the form

��r� = 14.671110�r − 3.0�5 − 12.910630�r − 3.0�4

+ 1.725326�r − 3.0�3 + 0.222124�r − 3.0�2

+ 0.452143�r − 3.0� − 0.146964.

The potential, defined in this way, has a continuous second
derivative everywhere. The potential has minimum of depth
��rmin�=−0.2516 eV at rmin=2.6166 Å.

The corresponding parameters of the cut and shifted
Lennard-Jones potential,

�LJ�r 	 2.5�� = 4����

r
�12

− ��

r
�6� + � ,

are �=2.3312 Å, �=0.2558 eV, and �=0.0042 eV.

APPENDIX B: DISTRIBUTIONS OF PARAMETERS AND
THEIR AVERAGE VALUES

In this section we present some results on distributions of
parameters that enter into the expressions for the self-
energies of atomic-level stresses. The results presented were
obtained with the LJ potential at the number density of par-
ticles, �=0.07843 Å−3, that corresponds to the distance, rnn
=2.6223 Å, between the nearest neighbors in fcc lattice.

Figure 7 shows the distributions of local atomic volumes
Vi that were calculated using the following expressions:8–13

Vi = �4�

3
�ri

3, ri =
1

2

�
j

wijrij

�
j

wij

, wij =
1

rij
2 . �B1�

In Eq. �B1� the contribution of the neighbor j to the average
radius ri of the shell around atom i is proportional to the
solid angle, ij, which atom j blocks, as seen from atom i,
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i.e., �ij �wij�. Thus, atoms that are further away from the
central atom contribute less to the average radius of the shell
than atoms that are closer. In all our calculations the chosen
value of cutoff in Eq. �B1� corresponds to the first minimum
in the pair-density function.

Figure 8 shows the distributions of stress components ��

and ��1. The distributions of other shear-stress components
are almost identical to those of ��1, as they should be.

Figure 9 shows the distributions of the local atomic elastic
constants Ci

� and Ci
�1. The distributions for the other shear

elastic constants are almost identical to those of Ci
�1, as they
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should be. It could be seen in Fig. 9 that some sites have zero
or negative values of local shear elastic constants. Thus the
atomic configurations involving these sites are unstable with
respect to some deformations, as discussed in Sec. VI of the
paper.

Note that the larger �potential range� cutoff for the pres-
sure component of the stress shifts the distribution to the
right. This behavior is expected since one can obtain the
following expression for the �i

� from Eqs. �4� and �5�,

�i
� =

1

2	3
� 1

Vi
��

j
�d��rij�

drij
�rij . �B2�

When we consider potential range cutoff, we include the
second �and third� coordination shells into account. The de-
rivatives for the second and third neighbors in Eq. �B2� are
positive. Thus the distribution and average pressure shift to
the right.

A similar argument works for the elastic constant Ci
�,

which is given by

Ci
� =

1

6
� 1

Vi
��

j
�d2��rij�

drij
�rij

2 . �B3�

For the second and third nearest neighbors, the second de-
rivative is negative. Thus the inclusion of the second and
third nearest neighbors shifts the distribution to the left.

However, the shifts in the distributions of stresses and
elastic constants do not affect the values of the stress ener-
gies in a significant way. Thus for the pressure component
shown in Fig. 4, there is almost no difference. On the other
hand, while we essentially do not see much differences be-
tween the distributions of shear stresses for the two cutoffs,
we do see small changes �due to elastic constants� in the
values of the energies for the shear-stress components �Fig.
4�.

The upper plot in Fig. 10 shows the temperature depen-
dence of the mean-square deviations of local atomic stresses.
The bottom plot shows the temperature dependence of the
average values of local atomic elastic constants. The values
of elastic constants increase with temperature because the
volume was kept constant.
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